Rabu, 24 April 2013

pemeriksaan bilirubin



Bilirubin
Bilirubin adalah pigmen kuning yang berasal dari perombakan heme dari hemoglobin dalam proses pemecahan eritrosit oleh sel retikuloendotel. Di samping itu sekitar 20% bilirubin berasal dari perombakan zat-zat lain. Sel retikuloendotel membuat bilirubin tidak larut dalam air, bilirubin yang disekresikan dalam darah harus diikatkan albumin untuk diangkut dalam plasma menuju hati.(3:295)
Di dalam hati, hepatosit melepaskan ikatan dan mengkonjugasinya dengan asam glukoronat sehingga bersifat larut air, sehingga disebut bilirubin direk atau glukoroniltransferase, selain dalam bentuk  diglukoronida dapat juga dalam bentuk bilirubin terkonjugasi. Proses konjugasi melibatkan enzim glukoroniltransferase, selain dalam bentuk diglukoronida dapat juga dalam bentuk monoglukoronida atau ikatan dengan glukosa, xylosa dan sulfat. terkonjugasi dikeluarkan melalui proses energi kedalam sistem bilier. (3:295)
Bilirubin berikatan dengan albumin sehingga zat ini dapat diangkut ke seluruh tubuh. Dalam bentuk ini, spesies molekular disebut bilirubin tak terkonjujgasi. Sewaktu zat ini beredar melalui hati, hepatosit melakukan fungsi sebagai berikut :
1.    Penyerapan bilirubin dan sirkulasi
2.    Konjugasi enzimatik sebagai bilirubin glukuronida
3.    Pengangkutan dan ekskresi bilirubin terkonjugasi ke dalam empedu untuk dikeluarkan dari tubuh
Konjugasi intrasel asam glukoronat ke dua tempat di molekul bilirubin menyebabkan bilirubin bermuatan negatif, sehingga bilirubin terkonjugasi ini larut dalam fase air. Apabila terjadi obstruksi atau kegagalan lain untuk mengekskresikan bilirubin terkonjugasi ini zat ini akan masuk kembali ke dan tertimbun dalam sirkulasi (3:295)
Selain bilirubin masuk ke dalam usus, bakteri kolon mengubah bilirubin menjadi urobilinogen yaitu beberapa senyawa tidak berwarna yang kemudian mengalami oksidasi menjadi pigmen coklat urobilin. Urobilin diekskresikan dalam feses tetapi sebagian urobilinogen direabsorpsi melalui usus, dan melalui sirkulasi portal diserap oleh hati dan direekskresikan dalam empedu. Karena larut air, urobilinogen juga dapat keluar melalui urin apabila mencapai ginjal.(3:295)
Pembentukan bilirubin
Dalam keadaan fisiologis, masa hidup eritrosit manusia sekitar 120 hari, eritrosit mengalami lisis 1-2×108 setiap jamnya pada seorang dewasa dengan berat badan 70 kg, dimana diperhitungkan hemoglobin yang turut lisis sekitar 6 gr per hari. Sel-sel eritrosit tua dikeluarkan dari sirkulasi dan dihancurkan oleh limpa. Apoprotein dari hemoglobin dihidrolisis menjadi komponen asam-asam aminonya. Katabolisme heme dari semua hemeprotein terjadi dalam fraksi mikrosom sel retikuloendotel oleh sistem enzim yang kompleks yaitu heme oksigenase yang merupakan enzim dari keluarga besar sitokrom P450. Langkah awal pemecahan gugus heme ialah pemutusan jembatan α metena membentuk biliverdin, suatu tetrapirol linier. Besi mengalami beberapa kali reaksi reduksi dan oksidasi, reaksi-reaksi ini memerlukan oksigen dan NADPH. Pada akhir reaksi dibebaskan Fe3+ yang dapat digunakan kembali, karbon monoksida yang berasal dari atom karbon jembatan metena dan biliverdin. Biliverdin, suatu pigmen berwarna hijau akan direduksi oleh biliverdin reduktase yang menggunakan NADPH sehingga rantai metenil menjadi rantai metilen antara cincin pirol III – IV dan membentuk pigmen berwarna kuning yaitu bilirubin. Perubahan warna pada memar merupakan petunjuk reaksi degradasi ini. (4:2)
Bilirubin bersifat lebih sukar larut dalam air dibandingkan dengan biliverdin. Dalam setiap 1 gr hemoglobin yang lisis akan membentuk 35 mg bilirubin dan tiap hari dibentuk sekitar 250–350 mg pada seorang dewasa, berasal dari pemecahan hemoglobin, proses erytropoetik yang tidak efekif dan pemecahan hemprotein lainnya. Bilirubin dari jaringan retikuloendotel adalah bentuk yang sedikit larut dalam plasma dan air. Bilirubin ini akan diikat nonkovalen dan diangkut oleh albumin ke hepar. Dalam 100 ml plasma hanya lebih kurang 25 mg bilirubin yang dapat diikat kuat pada albumin. Bilirubin yang melebihi jumlah ini hanya terikat longgar hingga mudah lepas dan berdifusi ke jaringan. Bilirubin yang sampai dihati akan dilepas dari albumin dan diambil pada permukaan sinusoid hepatosit oleh suatu protein pembawa yaitu ligandin. Sistem transport difasilitasi ini mempunyai kapasitas yang sangat besar tetapi penggambilan bilirubin akan tergantung pada kelancaran proses yang akan dilewati bilirubin berikutnya. Bilirubin nonpolar akan menetap dalam sel jika tidak diubah menjadi bentuk larut. Hepatosit akan mengubah bilirubin menjadi bentuk larut yang dapat diekskresikan dengan mudah kedalam kandung empedu. Proses perubahan tersebut melibatkan asam glukoronat yang dikonjugasikan dengan bilirubin, dikatalisis oleh enzim bilirubin glukoronosiltransferase. Hati mengandung sedikitnya dua isoform enzym glukoronosiltransferase yang terdapat terutama pada retikulum endoplasma. Reaksi konjugasi ini berlangsung dua tahap, memerlukan UDP asam glukoronat sebagai donor glukoronat. Tahap pertama akan membentuk bilirubin monoglukoronida sebagai senyawa antara yang kemudian dikonversi menjadi bilirubin diglukoronida yang larut pada tahap kedua.
Metabolisme Bilirubin
Hati merupakan organ terbesar, terletak di kuadran kanan atas rongga abdomen. Hati melakukan banyak fungsi penting dan berbeda-beda dan trgantung pada sistem darahnya yang unik dan sel-selnya yang sangat  khusus. Hati tertutupi kapsul fibroelastik berupa kapsul glisson. Kapsul glisson berisi pembuluh darah, pembuluh limfe, dan saraf. Hati terbagi menjadi lobus kanan dan lobus kiri. Tiap lobus tersusun atas unit-unit kecil yang disebut lobulus. Lobulus terdiri sel-sel hati, disebut hepatosit yang menyatu dalam lempeng. Hepatosit dan jaringan hati mudah mengalami regenerasi. (3:216)
Hati menerima darah dari 2 sumber, yaitu arteri hepatika (banyak mengandung oksigen) yang mengalirkan darah ±500 ml/mnt dan vena porta (kurang kandungan oksigen tapi kaya zat gizi, dan mungkin berisi zat toksik dan bakteri) yang menerima darah dari lambung, usus, pankreas dan limpa; mengalirkan darah ±1000 ml/mnt. Kedua sumber tersebut mengalir ke kapiler hati yang disebut sinusoid lalu diteruskan ke vena sentralis ditiap lobulus. Dan dari semua lobulus ke vena hepatika berlanjut ke vena kava inferior. Tekanan darah di sistem porta hepatika sangat rendah, ±3 mmHg dan di vena kava hampir 0 mmHg. Karena tidak ada resistensi aliran melalui vena porta dan vena kava sehingga darah mudah masuk dan keluar hati. Hati menjalankan berbagai macam fungsi terutama metabolisme, baik anabolisme atau katabolisme molekul-molekul makanan dasar (gula, asam lemak, asam amino) dilakukan oleh sel-sel hati. (3:216)
Bilirubin merupakan suatu senyawa tetrapirol yang dapat larut dalam lemak maupun air yang berasal dari pemecahan enzimatik gugus heme dari berbagai heme protein seluruh tubuh. Sebagian besar ( kira- kira 80 % ) terbentuk dari proses katabolik hemoglobin, dalam proses penghancuran eritrosit oleh RES di limpa, dan sumsum tulang. Disamping itu sekitar 20 % dari bilirubin berasal dari sumber lain yaitu non heme porfirin, prekusor pirol dan lisis eritrosit muda. Dalam keadaan fisiologis pada manusia dewasa, eritrosit dihancurkan setiap jam. Dengan demikian bila hemoglobin dihancurkan dalam tubuh, bagian protein globin dapat dipakai kembali baik sebagai protein globin maupun dalam bentuk asam- asam aminonya.(3:216-217)
Metabolisme bilirubin diawali dengan reaksi proses pemecahan heme oleh enzim hemoksigenase yang mengubah biliverdin menjadi bilirubin oleh enzim bilirubin reduksitase. Sel retikuloendotel membuat bilirubin tak larut air, bilirubin yang sekresikan ke dalam darah diikat albumin untuk diangkut dalam plasma. Hepatosit adalah sel yang dapat melepaskan ikatan, dan mengkonjugasikannya dengan asam glukoronat menjadi bersifat larut dalam air. Bilirubin yang larut dalam air masuk ke dalam saluran empedu dan diekskresikan ke dalam usus . Didalam usus oleh flora usus bilirubin diubah menjadi urobilinogen yang tak berwarna dan larut air, urobilinogen mudah dioksidasi menjadi urobilirubin yang berwarna. Sebagian terbesar dari urobilinogen keluar tubuh bersama tinja, tetapi sebagian kecil diserap kembali oleh darah vena porta dikembalikan ke hati. Urobilinogen yang demikian mengalami daur ulang, keluar lagi melalui empedu. Ada sebagian kecil yang masuk dalam sirkulasi sistemik, kemudian urobilinogen masuk ke ginjal dan diekskresi bersama urin (3:217)
Metabolisme Bilirubin di Hati
Metabolisme bilirubin dalam hati dibagi menjadi 3 proses:
1.    Pengambilan (uptake) bilirubin oleh sel hati
2.    Konjugasi bilirubin
3.    Sekresi bilirubin ke dalam empedu (5:2)





















BILIRUBIN DIREK
Bilirubin terkonjugasi /direk
Bilirubin terkonjugasi /direk adalah bilirubin bebas yang bersifat larut dalam air sehingga dalam pemeriksaan mudah bereaksi. Bilirubin terkonjugasi (bilirubin glukoronida atau hepatobilirubin ) masuk ke saluran empedu dan diekskresikan ke usus. Selanjutnya flora usus akan mengubahnya menjadi urobilinogen.(6:1)
 Bilirubin terkonjugasi bereaksi cepat dengan asam sulfanilat yang terdiazotasi membentuk azobilirubin. Peningkatan kadar bilirubin direk atau bilirubin terkonjugasi dapat disebabkan oleh gangguan ekskresi bilirubin intrahepatik antara lain Sindroma Dubin Johson dan Rotor, Recurrent (benign) intrahepatic cholestasis, Nekrosis hepatoseluler, Obstruksi saluran empedu. Diagnosis tersebut diperkuat dengan pemeriksaan urobilin dalam tinja dan urin dengan hasil negatif. (6:1)
Faktor - Faktor Yang Mempengaruhi Stabilitas Bilirubin Total
Dalam suatu pemeriksaan bilirubin total, sampel akan selalu berbubungan langsung dengan faktor luar. Hal ini erat sekali terhadap kestabilan kadar sampel yang akan diperiksa, sehingga dalam pemeriksaan tersebut harus memperhatikan faktor-faktor yang mempengaruhi stabilitas kadar bilirubin total dalam serum diantaranya yaitu
a.    Sinar 
Stabilitas bilirubin dalam serum pada suhu kamar tidak stabil dan mudah terjadi kerusakan terutama oleh sinar, baik sinar lampu ataupun sinar matahari. Serum atau plasma heparin boleh digunakan, hindari sampel yang hemolisis dan sinar matahari langsung. Sinar matahari langsung dapat menyebabkan penurunan kadar bilirubin serum sampai 50% dalam satu jam, dan pengukuran bilirubin total hendaknya dikerjakan dalam waktu dua hingga tiga jam setelah pengumpulan darah. Bila dilakukan penyimpanan serum hendaknya disimpan di tempat yang gelap, dan tabung atau botol yang berisi serum di bungkus dengan kertas hitam atau aluminium foil untuk menjaga stabilitas serum dan disimpan pada suhu yang rendah atau lemari pendingin (5:6)
b.    Suhu Penyimpanan
Suhu merupakan faktor luar yang selalu berhubungan langsung terhadap sampel, baik saat penyimpanan maupun saat pemeriksaan. Pemeriksaan kadar bilirubin total sebaiknya diperiksa segera, tapi dalam keaadaan tertentu pemeriksaan kadar bilirubin total bisa dilakukan penyimpanan. Dengan penyimpanan yang benar stabilitas serum masih stabil dalam waktu satu hari bila disimpan pada suhu 15 ºC-25ºC, empat hari pada suhu 2ºC-8ºC, dan tiga bulan pada penyimpanan -20ºC . (DialineDiagnostik ). Lamanya sampel kontak dengan faktor-faktor di atas berpengaruh terhadap kadar bilirubin didalam sampel sehingga perlu upaya mengurangi pengaruh tersebut serta mengoptimalkan kadar bilirubin total di dalam serum agar dapat bereaksi dengan zat pereaksi secara sempurna, sedangkan reagen bilirubin total akan tetap stabil berada pada suhu 2-8ºC dalam keadaan tertutup, terhindar dari kontaminan dan sinar. Dalam hal ini dapat dimungkinkan bahwa penurunan kadar bilirubin dipengaruhi oleh kenaikan suhu dan pengaruh sinar yang berintensitas tinggi .(5:7)

Jumat, 12 April 2013

Gamma Glutamil Transferase (GGT)



Gamma-glutamil transferase (gamma-glutamyl transferase, GGT) adalah enzim yang ditemukan terutama di hati dan ginjal, sementara dalam jumlah yang rendah ditemukan dalam limpa, kelenjar prostat dan otot jantung. Gamma-GT merupakan uji yang sensitif untuk mendeteksi beragam jenis penyakit parenkim hati. Kebanyakan dari penyakit hepatoseluler dan hepatobiliar kadar GGT dalam serumnya meningkat. Kadar dalam serum ini akan meningkat lebih awal dan tetap akan meningkat selama kerusakan sel tetap berlangsung. GGT mengkatalisis transfer gugus gamma-glutamil glutathione ke akseptor yang mungkin ada dalam gugus asam amino, peptida atau air (membentuk glutamat). GGT memainkan peran kunci dalam siklus gamma-glutamil, untuk jalur sintesis dan degradasi glutathione dan obat serta detoksifikasi xenobiotic. GGT hadir dalam membran sel jaringan, termasuk ginjal, saluran empedu, pankreas, hati, limpa, jantung, otak, dan vesikula seminalis. Hal ini terlibat dalam transfer asam amino menyeberangi membran selular dan metabolisme leukotriene. Selain itu, hal ini juga terlibat dalam metabolisme glutathione dengan mentransfer bagian glutamil ke berbagai molekul akseptor termasuk air, asam L-amino tertentu, dan peptida, meninggalkan produk sistein untuk mempertahankan homeostasis intraseluler stres oksidatif.
Reaksi umum adalah:
(5-L-glutamil)-peptida + suatu peptida asam \ rightleftharpoons amino + asam amino 5-L-glutamil.
GGT memiliki beberapa kegunaan sebagai penanda diagnostik dalam kedokteran. Hasil tes darah untuk GGT menunjukkan bahwa nilai yang normal adalah sekitar 40-78 U / L. Peningkatan aktivitas GGT serum dapat ditemukan dalam penyakit hati, sistem empedu, dan pankreas. Dalam hal ini, mirip dengan alkali fosfatase (ALP) dalam mendeteksi penyakit saluran empedu. GGT ini juga dapat digunakan untuk mengindikasikan penyalahgunaan alkohol atau penyakit hati alkoholik. Yaitu, pengkonsumsian alkohol berlebihan sampai 3 atau 4 minggu sebelum tes. Banyak obat dapat meningkatkan kadar GGT, termasuk barbiturat dan fenitoin lain termasuk NSAID, St John's Wort, dan aspirin. Peningkatan tingkat GGT mungkin juga karena gagal jantung kongestif.

Kamis, 04 April 2013

elektrolit darah


Tubuh kita ini adalah ibarat suatu jaringan listrik yang begitu kompleks, didalamnya terdapat beberapa ‘pembangkit’ lokal seperti jantung, otak dan ginjal. Juga ada ‘rumah-rumah’ pelanggan berupa sel-sel otot. Untuk bisa mengalirkan listrik ini diperlukan ion-ion yang akan mengantarkan ‘perintah’ dari pembangkit ke rumah-rumah pelanggan. Ion-ion ini disebut sebagai elektrolit. Ada dua tipe elektrolit yang ada dalam tubuh, yaitu kation (elektrolit yang bermuatan positif) dan anion (elektrolit yang bermuatan negatif). Masing-masing tipe elektrolit ini saling bekerja sama mengantarkan impuls sesuai dengan yang diinginkan atau dibutuhkan tubuh.
Beberapa contoh kation dalam tubuh adalah Natrium (Na+), Kaalium (K+), Kalsium (Ca2+), Magnesium (Mg2+). Sedangkan anion adalah Klorida (Cl-), HCO3-, HPO4-, SO4-. Dalam keadaan normal, kadar kation dan anion ini sama besar sehingga potensial listrik cairan tubuh bersifat netral. Pada cairan ektrasel (cairan diluar sel), kation utama adalah Na+ sedangkan anion utamanya adalah Cl-.. Sedangkan di intrasel (di dalam sel) kation utamanya adalah kalium (K+).
Disamping sebagai pengantar aliran listrik, elektrolit juga mempunyai banyak manfaat, tergantung dari jenisnya. Contohnya :
§  Natrium     : fungsinya sebagai  penentu utama osmolaritas dalam darah dan pengaturan volume ekstra sel.
§  Kalium       : fungsinya mempertahankan  membran potensial elektrik dalam tubuh.
§  Klorida      : fungsinya mempertahankan tekanan osmotik, distribusi air pada berbagai cairan tubuh dan keseimbangan anion dan kation dalam cairan ekstrasel.
§  Kalsium     : fungsi utama kalsium adalah sebagai penggerak dari otot-otot, deposit utamanya berada di tulang dan gigi, apabila diperlukan, kalsium ini dapat berpindah ke dalam darah.
§  Magnesium : Berperan penting dalam aktivitas elektrik jaringan, mengatur pergerakan Ca2+ ke dalam otot serta memelihara kekuatan kontraksi jantung dan kekuatan pembuluh darah tubuh.
Tidak semua elektrolit akan kita bahas, hanya kalium dan natrium yang akan kita bahas. Ada dua macam kelainan elektrolit yang terjadi ; kadarnya terlalu tinggi (hiper) dan kadarnya terlalu rendah (hipo). Peningkatan kadar konsentrasi Natrium dalam plasma darah atau disebut hipernatremia akan mengakibatkan kondisi tubuh terganggu seperti kejang akibat dari gangguan listrik di saraf dan otot tubuh. Natrium yang juga berfungsi mengikat air juga mengakibatkan meningkatnya tekanan darah yang akan berbahaya bagi penderita yang sudah menderita tekanan darah tinggi. Sumber natrium berada dalam konsumsi makanan sehari-hari kita; garam, sayur-sayuran dan buah-buahan banyak mengandung elektrolit termasuk natrium.
Banyak kondisi yang mengakibatkan meningkatnya kadar natrium dalam plasma darah. Kondisi dehidrasi  akibat kurang minum air, diare, muntah-muntah, olahraga berat, sauna menyebabkan tubuh kehilangan banyak air sehingga darah menjadi lebih pekat dan kadar natrium secara relatif juga meningkat. Adanya gangguan ginjal seperti pada penderita Diabetes dan Hipertensi juga menyebabkan tubuh tidak bisa membuang natrium yang berlebihan dalam darah. Makan garam berlebihan serta penyakit yang menyebabkan peningkatan berkemih (kencing) juga meningkatkan kadar natrium dalam darah.
Sedangkan hiponatremia atau menurunnya kadar natrium dalam darah dapat disebabkan oleh kurangnya diet makanan yang mengandung natrium, sedang menjalankan terapi dengan obat diuretik (mengeluarkan air kencing dan elektrolit), terapi ini biasanya diberikan dokter kepada penderita hipertensi dan jantung, terutama yang disertai bengkak akibat tertimbunnya cairan. Muntah-muntah yang lama dan hebat juga dapat menurunkan kadar natrium darah, diare apabila akut memang dapat menyebabkan hipernatremia tapi apabila berlangsung lama dapat mengakibatkan hiponatremia, kondisi darah yang terlalu asam (asidosis) baik karena gangguan ginjal maupun kondisi lain misalnya diabetes juga dapat menjadi penyebab hiponatremia. Akibat dari hiponatremia sendiri relatif sama dengan kondisi hipernatremia, seperti kejang, gangguan otot dan gangguan syaraf.
Disamping natrium, elektrolit lain yang penting adalah kalium. Fungsi kalium sendiri mirip dengan natrium, karena kedua elektrolit ini ibarat kunci dan anak kunci yang saling bekerja sama baik dalam mengatur keseimbangan osmosis sel, aktivitas saraf dan otot serta keseimbangan asam – basa.
Kondisi hiperkalemia atau meningkatnya kadar kalium dalam darah menyebabkan gangguan irama jantung hingga berhentinya denyut jantung, Kondisi ini merupakan kegawatdaruratan yang harus segera diatasi karena mengancam jiwa. Beberapa hal yang menjadi penyebab meningkatnya kadar kalium adalah pemberian infus yang mengandung kalium, dehidrasi, luka bakar berat, kenjang, meningkatnya kadar leukosit darah, gagal ginjal, serangan jantung dan meningkatnya keasaman darah karena diabetes. Keadaan hiperkalemia ini biasanya diketahui dari keluhan berdebar akibat detak jantung yang tidak teratur, yang apabila dilakukan pemeriksaan rekam jantung menunjukkan gambaran yang khas.
Kondisi yang berkebalikan terjadi pada hipokalemia, penderita biasanya mengeluhkan badannya lemas dan tak bertenaga. Hal ini terjadi mengingat fungsi  kalium dalam menghantarkan aliran saraf di otot maupun tempat lain. Penyebab hipokalemia lebih bervariasi, penurunan konsumsi kalium akibat kelaparan yang lama dan pasca operasi yang tidak mendapatkan cairan mengandung kalium secara cukup adalah penyebab hipokalemia. Terapi insulin pada diabet dengan hiperglikemia, pengambilan glukosa darah ke dalam sel serta kondisi darah yang basa (alkalosis) menyebabkan kalim berpindah dari luar sel (darah) ke dalam sel-sel tubuh.Akibatnya kalium dalam darah menjadi menurun.
Kehilangan cairan tubuh yang mengandung kalium seperti muntah berlebih, diare, terapi diuretik, obat-obatan, dan beberapa penyakit seperti gangguan ginjal dan sindroma Cushing (penyakit akibat gangguan hormon) ju7ga menyebabkan penurunan kalium dalam darah. Penanganan kondisi hipokalemia adalah dengan mengkonsumsi makanan yang mengandung kalium tinggi seperti buah-buahan, mengobati penyakit penyebabnya dan apabila kadar kalium darah rendah sekali dapat dikoreksi dengan memasukkan kalium melalui infus.